
The QisMLib System
(as of 2017-05-26)

© Artwork Conversion Software Inc.

www.artwork.com

The QisMLib System

The QisMLib system is an extensible collection of Object-oriented C++ APIs to work with GDSII and OASIS* data and make the best use of parallel processing (threads)

wherever possible. It is the next step in evolution of Artwork’s proven and extensively used QisLib Library with modern software techniques such as multi-threading, object-

oriented design and plug-in architecture. QisMLib is actively supported on 64-bit Windows and Linux platforms. Some of the key components/APIs are :-

QisMLib API serves as the gateway to the QisMLib system. It facilitates loading of a GDSII/OASIS* or DbLoad file and provides access to various extension APIs

QisMFile is the API to work with a file loaded into the QisMLib database. It provides functions to get information about the file such as cells, layers etc. and facilitates the

creation of one or more independent window query objects (exploders) to collect get vector data crossing a window of interest

QisMExploder is the API to invoke a window query to collect vector data for a given view (window, cell, layers , nesting level and various other settings), each in it’s own

thread

QisMDraw is the API to draw a given view directly to a client screen or render the view to a GIF/BITMAP/XPM image or collect vector data specialized for drawing based on

various settings such as window, cell, layers, nesting level, colors, display filters etc.

QisMBool is the API to perform multi-threaded boolean operations such as UNION, INTERSECTION, XOR, DIFFERENCE on polygons as well as other operations such as

sizing, clipping etc. on very large sets of polygons

QisMLayerSynth is an extended API that allows the synthesis of new polygons by performing multi-threaded boolean operations UNION, INTERSECTION, XOR, DIFFERENCE,

AGGREGATION as well as clipping on polygons belonging to one or more layers

QisMClipExtract is an extended API that allows multi-threaded extraction of thousands of tiny clips of data for a given set of layers in form of GDSII/OASIS files (polygons)

or TIFF/BMP/RAW files (raster images) or in-memory polygon or image buffers

QisMNtrc is an extended API that allows multi-threaded tracing of nets (connected METAL and VIA sets) based on a pre-defined stackup

QisMRaster is an extended API that allows multi-threaded high-resolution rasterization of very large polygon sets

The QisMLib system can be extended with new APIs (via the QisMLib extension system) as needed

© Artwork Conversion Software Inc.

www.artwork.com * OASIS not optimized for multi-threading

The QisMLib System

* OASIS not optimized for multi-threading
© Artwork Conversion Software Inc.

www.artwork.com

QisMNtrc

(extension/plug-in)

QisMClipExtract

(extension/plug-in)

QisMLayerSynth

(extension/plug-in)

GDSII

DBLOAD

OASIS*

GDSII
OASIS
TIFF
BMP
RAW

QisMLib

QisMBool

QisMFile

QisMExploder

QisMDraw

(New extension APIs
in the future)

QisMRaster

(extension/plug-in)

TIFF

BMP

RAW

The QisMLib Extension (plug-in) System

Inside the Extension DLL (abc.dll)...

int QisMLib_extension_init_once(dllpath, dllhandle, extension_manager, ..) {

 /* Initialize extension resources */

 ...

 extension_manager->Register_extension_api(apiName, apiHandle);

 ...

 return 0;

}

Initialize QisMLib

qismlib_handle = ::QisMLib_initialize_once(..);

EXTENSION=<some-path>/abc.dll

...

EXTENSION=<some-path>/xyz.dll

Read Config File (.cfg)

Load extension DLL abc.dll

...
Load extension DLL xyz.dll

Close QisMLib

::QisMLib_close_once(qismlib_handle);

Inside the Extension DLL (xyz.dll)...

void QisMLib_extension_close_once() {

 /* Release extension resources */

 ...

}

Unload extension DLL xyz.dll

...

Inside the Extension DLL (abc.dll)...

void QisMLib_extension_close_once() {

 /* Release extension resources */

 ...

}

...
Unload extension DLL abc.dll

qismlib.h qismextension.h

For API details, refer to the appropriate .h file

QisMLib API how to..
load a file..

© Artwork Conversion Software Inc.

www.artwork.com

Initialize QisMLib

qismlib_handle = ::QisMLib_initialize_once(..);

Specify file load settings (optional)

load_settings->Layer_map(..);

load_settings->Ignore_texts(..);

load_settings->File_data_on_disk(..);

Load a file

qismfile_handle = qismlib_handle->Load_file(filepath, load_settings, ..);

Create an object for load settings (optional)

load_settings = qismlib_handle->New_loadFile_ctrl();

Perform various operations on the file...

Unload the file

qismlib_handle->Unload_file(qismfile_handle);

Close QisMLib

::QisMLib_close_once(qismlib_handle);

Destroy load settings object (optional)

qismlib_handle->Delete_loadFile_ctrl(load_settings);

(#11003) +1

qismlib.h qismfile.h Requires license (product-number) +/-(count)

(#11003) -1

For API details, refer to the appropriate .h file

QisMLib API how to..
collect vector data..

© Artwork Conversion Software Inc.

www.artwork.com
qismexploder.h qismfile.h Requires license (product-number) +/-(count) qismbase.h

Load a file..

Destroy the exploder

qismfile_handle->Destroy_exploder(exploder_handle);

Specify view settings

exploder_handle->Set_view_cell(..);

exploder_handle->Set_layers_on(..);

exploder_handle->Set_nesting_level(..);

exploder_handle->Set_extract_window(..);

exploder_handle->Set_text_on(..);

Specify vector data settings

exploder_handle->Set_convert_paths_to_boundaries(..);

exploder_handle->Set_vector_fully_inside(..);

exploder_handle->Set_array_mode(..);

Get vector data (explode)

exploder_handle->Get_vector_data(callback_handler, ..);

Create an exploder

exploder_handle = qismfile_handle->Create_exploder(..);
(#11027) +1

callback_handler->On_qismt_vector_data_begin(..);

callback_handler->On_qismt_vector_data_end(..);

callback_handler->On_qismt_vector(..);

...

callback_handler->On_qismt_vector(..);

Series of callbacks to the client, one per data vector

(#11027) -1

For API details, refer to the appropriate .h file

QisMLib API how to..
render a view to a GIF image..

© Artwork Conversion Software Inc.

www.artwork.com
qismview.h Requires license (product-number) +/-(count) qismbase.h

For API details, refer to the appropriate .h file

qismlib.h qismdraw.h

(#11057) +1

(#11057) -1

Load a file..

Get the QisMDraw extension

qismdraw = qismlib_handle->Get_extension_api(QISMEXTENSION_QISMDRAW);

Open a drawing session

drawobj = qismdraw->Open_draw(qismfile_handle, ..);

Close the drawing session

qismdraw->Close_draw(drawobj);

Specify view settings

exploder_handle->Set_view_cell(..);

exploder_handle->Set_layers_on(..);

exploder_handle->Set_nesting_level(..);

exploder_handle->Set_text_on(..);

Specify draw settings

drawobj->Set_display_filter_size(..);

drawobj->Set_fill(..);

drawobj->Set_background_color(..);

drawobj->Set_scale_bar(..);

drawobj->Set_layers_fill_color(..);

drawobj->Set_layers_outline_color(..);

...

Draw to image

drawobj->Set_image_size(..);

drawobj->Set_window(..);

drawobj->Redraw_image(QisMDrawFlag::IFF_GIF, .., refresh_callback, 1000, ..);

refresh_callback->On_qismt_refresh();

...

Get partial image

drawobj->Get_partial_image(..);

...

refresh_callback->On_qismt_refresh();

Every 1000ms (1sec) until drawing is complete

Get partial image to show
incremental drawing progress

QisMLib API how to..
perform boolean operations on two polygon sets..

© Artwork Conversion Software Inc.

www.artwork.com
qismbool.h Requires license (product-number) +/-(count)

For API details, refer to the appropriate .h file

qismlib.h

(#11047) +1

(#11047) -1

Initialize QisMLib..

Get the QisMBool extension

qismbool = qismlib_handle->Get_extension_api(QISMEXTENSION_QISMBOOL);

Create a boolean object

boolobj = qismbool->Create_instance(..);

Destroy the boolean object

qismbool->Delete_settings(settings);

qismbool->Destroy_instance(boolobj);

Specify boolean settings

settings = qismbool->New_settings();

settings->Clip_window(..);

settings->Max_points(..);

...

Booleanize two sets of polygons

int** outXY = NULL; int* outNV = NULL; int outN = 0;

boolobj->BinaryMT(/*set A args*/, /*set B args*/, settings, opcode, nthreads, &outXY, &outNV, &outN);

Use the output polygon set

Release memory for output polygons

boolobj->Release(outXY, outNV, outN);

QisMLib API how to..
perform boolean operations between layers (layer synthesis)..

© Artwork Conversion Software Inc.

www.artwork.com
qismlayersynth.h Requires license (product-number) +/-(count)

For API details, refer to the appropriate .h file

qismlib.h

(#11069) +1

(#11069) -1

Load File..

Get the QisMLayerSynth extension

qismlsynth = qismlib_handle->Get_extension_api(QISMEXTENSION_QISMLSYNTH);

Create a synthesizer object

lsynthobj = qismlsynth->New_synthesizer(qismfile_handle, ..);

Destroy the synthesizer object

lsynthobj->Delete_spec(settings);

qismlsynth->Delete_synthesizer(lsynthobj);

Specify synthesis settings

settings = lsynthobj->New_spec();

settings->Layer_spec(..);

settings->View_cell(..);

settings->Clip_window(..);

...

Get synthesized polygons

lsynthobj-> Synthesize_layers(spec, callback_handler, nthreads);

callback_handler->Begin_synth(..);

callback_handler->End_synth(..);

callback_handler->Synthesized_polygon(..);

...

callback_handler->Synthesized_polygon(..);

Series of callbacks to the client, one per synthesized polygon

QisMLib API how to..
trace nets of connected metal and via layers (stackup)..

(in this example, trace nets from a single point/seed)

© Artwork Conversion Software Inc.

www.artwork.com
qismntrc.h Requires license (product-number) +/-(count)

For API details, refer to the appropriate .h file

qismlib.h

(#11059) +1

(#11059) -1

Load File..

Get the QisMNtrc extension

qismntrc = qismlib_handle->Get_extension_api(QISMEXTENSION_QISMNTRC);

Create a trace object

tracer = qismntrc->Open_trace(qismfile_handle, stackup_file, setupargs, ..);

Destroy the trace object

delete setupargs;

delete seed;

delete options;

qismntrc->Close_trace(tracer);

Specify tracing options

options = qismntrc->New_object(“TraceOptions”);

options->Thread_num(..);

...

Trace a net from the seed point

Tracer->Point_trace(seed, callback_handler, options);

callback_handler->Begin_net(..);

callback_handler->End_net(..);

callback_handler->Net_boundary(..);

...

callback_handler->Net_boundary(..);

Series of callbacks to the client, for each net polygon

Specify seed info

seed = qismntrc->New_object(“PointTraceArgs”);

seed->View_cell(..);

seed->Seed_layer(..);

seed->Seed_point(..);

Setup tracing

setupargs = qismntrc->New_object(“PreTraceOptions”);

setupargs->Optimal_tile(..);

setupargs->Max_via_size(..);

setupargs->Order_range(..);

QisMLib API how to..
extract lots of tiny clips of data in parallel..

(in this example, extract raster images)

© Artwork Conversion Software Inc.

www.artwork.com
qismclipextract.h Requires license (product-number) +/-(count)

For API details, refer to the appropriate .h file

qismlib.h

(#31209) +/-nE

nE= No. exploders =
No. parallel extractions

Load File..

Get the QisMClipExtract extension

clipextract = qismlib_handle->Get_extension_api(QISMEXTENSION_CLIPEXTRACT);

Create a window set

windowset = clipextract->New_window_set();

windowset->Add_window(..);

Extract window clips

clipextract->Extract_image(

 qismfile_handle, layers, cell,

 windowset, settings,

 callback_handler, nE, 1

);

clipextract->Delete_window_set(windowset);

Clipextract->Delete_image_args(settings);

callback_handler->On_clipextract_image(..);

...

callback_handler->On_clipextract_image(..);

Series of callbacks to the client, one per clip

Specify image settings

settings = clipextract->New_image_args();

settings->Pixelsize(..);

settings->Image_format(..);

settings->Invert(..);

...

QisMLib API how to..
rasterize a window containing a large number of polygons..

© Artwork Conversion Software Inc.

www.artwork.com
qismraster.h Requires license (product-number) +/-(count)

For API details, refer to the appropriate .h file

qismlib.h

(#14827) +1

(#14827) -1

Load a file..

Get the QisMRaster extension

qismraster = qismlib_handle->Get_extension_api(QISMEXTENSION_RASTER);

Create a rasterizer

rasterizer = qismraster->Create_rasterizer(qismfile_handle..);

Destroy the rasterizer

delete settings;

qismraster>Destroy_rasterizer(rasterizer);

Specify rasterizer settings

settings = qismbool->New_object();

settings->Pixelsize(..);

settings->Num_threads(..);

settings->Image_format(..);

...

Rasterize a window

image_handle = rasterizer->Rasterize_window(imageName, extents, settings, cell, layers);

Use the raster image

